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A. Statement of Problem Studied

Contract No. MIPR-ARD 124-84 was a $35,000 grant to investigate methods
for improving one and two dimensional shock flow calculations by combining
several approaches such as mesh refinement and moving grids for optimal
accuracy and efficiency.

B. Summary of Important Results

Extremely accurate shock flow results were obtained for standard one
dimensional model problems. Inviscid hydrodynamics are piecewise continuous;
derivatives at a discontinuity must be formed by appropriate one-sided
difference approximations consistent with_calculus. Because the spatial
derivative at a discontinuity is unbounded, it can be made finite if the
discontinuity is spread out using a consistent step function approximation,
for example, an arctan. The derivative with the discontinuity is a finite
approximation to a delta-function.

Second, a moving grid scheme was used. The grid velocity which is
arbitrary is taken to be that velocity in which the set of dependent variables
appear steady in the least squares sense. At a shock, contact surface or
rarefaction, the grid velocity for each component was equal, but not
necessarily equal in each continuous subregion. Wave steepening drives mesh
points together and whenever the distance of closest approach fell below
0.0001 and the gradients in that region grew from successive time steps, a new
discontinuity was inserted. A conservative static rezoning scheme was used as
a post processor after every time step permitting grids to move without
constraints.

After extensive testing, it was found that the standard local three finite
difference scheme performed very poorly for derivative estimates in the
rarefaction region. However, when a global monotonic spline interpolation
developed by Fritsch and Carlson was used, vastly improved accuracy was
obtained.
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Mesh refinement was used for interacting shock waves in conjunction with a
Riemann solver. The Riemann solver was used only to predict the outcome of a
wave interaction, not to advance the solution in time. Mesh points were
dynamically added to the computational domain for new shocks, contacts, and
rarefaction waves. It was thus possible to follow the interaction of shocks
with both step up and step-down contact interactions using a minimum number of
points extremely accurately.

Finally a two dimensional freely propagating shock was calculated using
the basic concepts developed in one-dimension. In 20, the components of the
grid velocity were found by rotation into the direction of the maximum
gradient, and a translation to a frame in which the dependent variables are
steady. Appropriate one sided differences were used at the shock. When
standard stencils could not be used at or near the shock, a second order
Taylor series on scattered data was used. The results for this problem were
excellent.

Because of the limited contract grant, no mathematical analysis was done.
The extension to the general case of 2D interacting shocks is unfinished, but
the essential building blocks have been obtained. A superior method for
differencing in two or three dimensions irregardless of a grid data structure
appears to be Hardy's [1] multiguadric interpolation (MQI) scheme.

MQI is a locally global interpolation scheme which uses upper hyperboloids
as basic functions. Franke [2] states that of all the methods he has tested
MQI is outstanding in accuracy, visual appearance, ease of use, and timing.
MQI is continuously differentiable permitting arbitrary data location without
the dispersion and dissipation truncation errors associated with local low
order interpolation based difference schemes. MQI has the power and accuracy
of spectral methods without the restriction of a logically rectangular tensor
product formulation.

Whenever possible, the analysis of Ben-Dor and Glass [3] and Mirels [4]
will be used for the 2D regular and Mach reflection problem. However, the
synthesis of the various aspects has yet to be done, and will be postponed
until future funding. ‘
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Highly Accurate Shock Flow Calculstions
with Moving Crids and Mesh Refinement*

Edvard J. Kansa
Lavrence Livermore National Laboratory
Earth Sciences Department, L-200
Post Office Box 808, Livermore, California 94550

Abstract

Five one-dimensional (1D) and one 2D shock wave
problems which propagate obliquely to the coordinate axes
sre solved by a second-order time-marching method. The
solution region is assumed co be piecewise continuous,
with any “discontinuities™ which may develop being
represented by an arctan approximation to a step func-
tion. [Immediately behind or ahead of a flagged "discon-
tinuity", appropriate one~sided derivatives are used.

An explicit moving grid technique is combined with the
time-integration scheme which yields the correct velocity
at "discontinuities™. Shock fitting is not only simply
handled, but it is handled automatically and correctly
by the choice of the grid velocities. The regularization
problem associated with moving grids is handled by a re~
zoning based on equidistributing the component averaged
third derivative. Because the approximste step-function
and the sbove-mentioned rules for derivative formation
are mathematically consistent, artificial viscosity is
unnecessary. The same second-order time integration
scheme is used throughout the entire spatial domain.
accurate physics of wave interactions, & nonlinear
Rismann solver is spplied. In conjunction with the
Riemann solver, adaptive mesh refinement injects mesh
soints into the coaputational domsin automatically to
define a post collision structure.

For

Ihe Time-Marching Scheme

For brevity, the reader is referred to Richtmeyer and
Morton [l] for details. The two-dimensional conservation
law form of the fluid-dynamic equstions is

Up *+ Ex * G, (1)

4
where the subscripts t, x, and y denote partial deriva-
tives. The fluxes F and G are related to the conserva-
tive variables U in the following manner:

-o.

Fx =AU G 2)

- ! !y
where A and 8 are the appropriate Jacobians.

However, the matrix representation of the Jacodbians
can be ambiguous regarding the nonlinear matrix elements.
The followiag procedure was used to guarantee rigorous
equality. Given Fy, Ux, Gy and Uy as known quantities,
the unkaown nonlinear matrix elements of the Jacobians,
A and 3 are solved.

The solution U, at the new time t®*l is given by a
second order Taylor series expansion as

Ulnel) = U(n) = S de {F gy}
(3
* 31 det (IAE, + G )1, ¢ I8E, » g1}

*  Work performed under the suspices of the U.S. Depart-
nent of Energy by the Lawrence Livermore National Labora-
tory under contract No. W-7403-ENGC-48 and partially
supported by the Army Research Office contract No.
MIPR-AKO 124-84.
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The Moving Grid Scheme

The approach taken in this paper is a modification
of the simplified moving finite difference (MFD) scheme
of Kansa et al. [2]. In that scheme, the penslty func-
tion approach for controlling grid motion was dropped in
favor of a time step control and & static regridding
scheme. The basic modification in this paper is that the
grid velocities are part of an explicit cime-integration
scheme.

The conservetion equations in a moving frame have the
following form (relative to the fixed frame):

gto(g‘-vly’)¢(g’-vzgy)-o.

%)
dx/dt = v1, dy/dt = v2,

where the grid velocity, v, is arbitrary. In the absence
of source teras, each PDE has a grid velocity for which
& specific component of U is stationary which is chosen
by

- . . .
vi e F /U if 101 £0; v2= c,/u’ if |uy| ¥ o. s)
In special regions such as shocks, coatact discontinui-
ties, and rarefaction waves, all the component grid
velocities are equal. For the convenience of dealing
vith a common grid, a common grid velocity was deter-
mined for the general case by requiring the entire set

of dependent variables at a given location be stationary
ia the least-squares sense, [2]. The time~integration
scheme, Eq. (3), is the same, except that the A-matrix

is now replaced by A - vI, and ¥x is replaced by Fx = vU,.
In two dimeusions, a rotation ia performed which maximizes
gradients along the prime coordinate, x'. Then a trans-
%;;ion frame is sought in which U is stationary using Eq.

Continuous Approximations of Discontinuities

Korn and Korn (3] have presented several approximace
functions for the step function. The choice used in this
paper approximates a step-function by the arctan function,

6 =4 (0 £) ¢ (£~ £/ arctmnlalem DIl (g,
aud s ® k/(x, - xg) for x in [xy, xrl and vhere £, and

fy are the endpoint values of the discontinuity, x, is

the midpoint of the discontinuity, and s is the spreading
parameter. Here the subscripts r and L refer to the right
(shead) and left (behind) of a discontinuity moving to the
right. In the limit of s going to infinity as (xe = xp)
goes to zero, f(x) becomes a true step function.

Three mesh points are sufficient to represent a
"discontinuity”: the two endpoints and the midpoint.
Successive differentation of Eq. (6.a) yields the
following midpoint derivatives:

£'(xg) = (£.-£p) s/x £f"(xy) =0 . (6b)
At the endpoints, the rules of calculus for piecevise
continuous functions (see Korn and Korn [3]) are used to
determine the derivatives at esither side of a
discontinuity.
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i'(xl) = !‘('l); f"(xl) - E"(xi) (6c)

' (x ) = £'(x); £'(x) = (xD)  - (6d)
| 4 t 4 4 | 4

Note that at the endpoints of a rarefaction fan, the
function is continuous, but the derivatives are not. Eq.
(6c) and (6d) are used at the appropriate locations.

Each component of F and U is fitted by its own step
function at a “"discontinuity”. The grid velocity is
found by using the appropriate flux and dependent veri-
able derivatives, Eq. (6b) in Eq. (5). The entire "dis-
continuity"” from xg to x, moves at the grid velo-
city. Since one can store the appropriate derivatives,
the same time-marching scheme, Eq. (3), can be used
everywhere except at the boundary. Numerical experimen—
tation has shown that in a moving frame, the first and
second order terms of Eq. (3) are identically zero where
the step function approximation is used. Using Eq. (6)
in Eq. (3) and Eq. (4) requires no artificial dissipa-
tion. Shock fitting is automatically and correctly
handled by this choice of moving grid velocities.

Because "discontinuities”, corners of rarefaction
fans, and boundaries are flagged, any shock flow can be
partitioned into several distinct piecewise continuous
subregions bounded by flagged and or bouadary points.
Grid motion in the subregions can be controlled by
equipartitioning the componeant averaged third derivative,
maintaining minimum spacing and well ordering of poinmts,
see [2]. The remapping is totally comservative because
the integral of the old partition is forced to equal the
integral of the new partition. In some circumstaunces,
new discontinuities tend to develop.

The nonlinear convective terms of the governing PDE's
permit steepening and eventual discontinuity formation.
In a moving grid scheme, this phenomeuon has been docu-
mented (see [2 and 4]). Given the current time step,
grid positions, and velocities, a search is made within
a piecewise countinuous region to determine whether grid
points would come within s separation of 10" or closer
in the next time cycle, and if gradients are becoming
very large. 1If so, a "discontinuity" defined by three
points, see Eq. (6), is inserted into the computational
domain, and another flag is set.

In this paper, a nonlinear 1-D Riemann solver is used
to specify the physics of wave collisions. The Riemann
solver is not used ia any variations of the Gudunov
scheme to time advance the solution. Therefore, it is
instructive to outline the use of the Riemann solver in
specifying the resulting physics sfter waves collide,
such as shocks with rigid walls, geometric symmetry
points, shocks with other shocks or contact surfaces,
ate.

The Riemann solver will produce one of five possible
aiddle state configurations depending upom input left
and right state densities, velocities and pressures,
located at Xg and Xy. They are: (1) middle vacuua
state, (2) a left and right rarefaction, (3) a left shock
and right rarefaction, (4) a left and right shock, and
(S) & left rarefaction and a right shock. If the middle
left and middle right densities are unequal then a den-
sity discontinuity exists. Discontinuities and rarefac-
tions are flagged.

Before advancing the solution and grid position to a
new time, a search is made of all neighboring "discoa-
tinuities"” using the relative separations and velocities
to determine vhether a wave collision is possidble during
the current time interval. If some collisions are
possible, then the minimum collision time interval is
found, and as a precaution, it is multiplied by 0.5.

If the separation of two existing waves is less than
or equal to €, where € is arbitrarily chosen to be 10°?,
then the time interval to complete collision, At], can be
calculated. Then the Riemann solver yields nev states
with new vave speeds., New discontinuities and rarefac-
tions sre flagged. The time interval, Acty, to the same
separation can be cslculated as well as the location
within that separation of all the interwediate waves
using the new wave velocities. Rather than fixing

-2

the total number of grid points, the number of grid
points can be dynsmically increased or decreased after
the post collision states are detersined.

Presentation of Results

8ix example problems are presented. These are: the
Riemana shock tube problem in cartesian geometry, the von
Neumann spherical blast wave problem {5], the spherical
blast wvave problem of Noh (6], and the shock tube pro-
blem involving an interacting shock with a step—down and
a step-up contact discontinuity. The last example is an
infinite planar two-dimensional shock propagating
obliquely to the coordinate axes.

All example calculations were solved in dimensionless
form. The solutions have sultiple time and length scales
which evolve in time. The reference length scale is the
distance from the origin at the left to the far right
boundary, scaled to unity. The reference time scale is
the reference length scale divided by the initial maximunm
speed. Relative to the initial length scale, the shock
half width is arbitrarily chosen to be 107°.

The first case to be considered is the Riemann shock
tube problem which was previously calculated by Sod (7]
and Harten and Hyman [8] with the initial discontinuity
at x * 1/2. At t = 0, a Riemann solver was used to
initialize the solution at s time step At, on the do-
sain [0,1]). A rerefaction wave propagates backwards
vhile & shock, followed by a contact surface, propagates
forward. This system has an analytic self-similar solu-
tion. The shock and comtact surface propagate forvard at
constant velocities. The rarefaction fan propagates
backwards along the local u-a characteristic, where u and
a are the local particle and sound velocities.

Figure 1 shows the numerical solution for the density
of y = 1.4 gas at t = 0.25. The diamonds in these
figures and all subsequent figures represent the actual
solution at the indicated nodal position. Note that be-
cause the couservative varisbles (see Eq. 2) vere used,
the gas velocity and pressure at a discontinuity say not
necessarily be the midpoint values.

The second problem attempted was the von Neumann (5]
infinite shock, spherical blast wave problem. Ahead of
the shock, p = u =0 and 0 = 1. The pressure behind
the shock at radius, r = 1, wvas specified to be 100. A
special routine was used to initialize the solution be-
hind the shock.

From the analysis of Zel'dovich et al. (9] and
Thompson {10), the following relations can be obtained
for a Y = 5/3 gas in terms of new variables:

Ppebp,us=(c/t) &, p= (r/t)p. N

Using the above relations in m and E as wvell as the
fluxes, the following relation was observed:

U, ¢ (/e (e F)_=o. (8)

Becsuse of the (1/t) wmultiplying the flux trsasport terms,
the integrating factor of Eq. (3) is La(t).

The results for pressure are shown in Fig. 2 at two
different times. In the woving frame, only density is
self-similar. The velocity and pressure profiles decay.
The in(ct) integrating factor gives the correct temporal
behavior vithout unnecessarily small time steps.

The next problem to be discussed is Noh's (6] spheri-
cally divergent shock problem. At time t = 0, ay = 5/3
g§8s at zero pressure, density of one, converges within
a sphere at & gas velocity of -1. Then at the center, a
shock develops with a density of 64, gas velocity of zero,
and pressure of 64/3 moving outwards at a shock velocity
of 1/3. Noh's challenge is to run the problem to a time
of t = 0.6,

In order to solve the shock state due to the focusing
of gas at the origin, the Riemann solver must be modified
for infinite shocks and cyliadrical and spherical geome-~
try. As soon as the gas moves inward, it is adiabatically
compressed by the spherical focusing. Since the initisl
pressure is zero, the subsequent pressure profile inward,
but not at the origin is also zero. The inward gas motion
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is self-similar with a constant gas velocity of u = -1,

and the mass conservation equation can be integrated to
yield

o= (1+e/e)d 8
for r>o

with the boundary condition
r™-t,ato2"=1].

Because of spherical symmetry, the gas velocity must
be zero at the origin. Using the notation that the sub-
scripts L and r refer to the left and right states ahead
of the shock, and m to the new middle shock state, the
known quantities are uy, PL ® Py ® 0; u, = -1, ug =1l.

The unknown quantities are Py, Op, uS, = =uSg, and o, = Pg.
Following Courant et al. [11], one finds for a v = 5/3 gas
that 0 ® 16, 0y = 64, usy = 1/3, and pg = 64/3. Fig. 3
is the density calculated to t = 0.6. Note that the
density has developed a new contact surface at the tail
before it abruptly drops to unity. This discontinuity

vas inserted as discussed previously.

The next problem in slab geometry is adapted from
Harlow and Amsden {12]. At t = 0, an incoming gas of
velocity u = ~1, p = 0 hits a rigid wall located at x = 0.
The initisl gas density is 2 for x < 1/2 and unity for
1/2 < x € L. The Riemann solver produces an outgoing
shock moving at a velocity of 1/3 and an incoming contact
discontinuity moving at & velocity of ~1. Figure 4 shovs
the density, at ¢t = 0.2 after the shock formation. Figure
4 also shows the density at t = 0.3169 just prior to the
shock colliding with the comtact discontinuity.

At the time of collision, the Riemann solver is used
again, yielding a left traveling rarefaction, and & right
traveling contact discontinuity and a shock with veloci~-
ties 0.166 and 0.5547, respectively. The post collision
states were resolved adequately by adaptive mesh refine-
ment. Figure 4 also shows the density at t = 0.4184.

The fifth probles to be considered is also taken from
Harlow and Amsden [12]. At t = 0, the initial stace was
defined to have a pressure equal to 10°*, an incoming
gas velocity of ~1, and & density of 1 for x < 1/2 snd
8/3 for x < 1/2 < 1. At x = 0, there is & rigid wall.

A flow with a density jump hits & rvigid wall, and a shock
is formed. The shock proceeds to the right and collides
with a step-up contact discontinuity. The Riemann solver,
at the time of collision, gives as solutions & right and
left traveling shock. Figure 5 shows the shock traveling
at t = 0.2 to the right vith a velocity Vg = 0.333 and

8 contact surface moving to the left at the velocity of
-l. Figure S also shows the new states gfter collision
at ¢ = 0.31867. Alchough this appears to be an overshoot,
the nev states are spread over a distance of 0.00l. The
new state has two shocks, the left shock has a velocity

of =0.909 and the right shock has a velocity of 0.0356.
The middle contact has s velocity of -0.223.

Figure 6 shows the density at t = 0.4186 with left
shock approaching the wall. At ¢t = 0.463, Fig. 6 shows
the density plot after vall collision. The shock hits
the wall proceeding forvard with a velocity of 0.7602.
Figure 7 at t = 0.56) shows the density profile just
prior to the collision of the contact with the left shock
wvhich reflected off cthe wall. Figure 7 alsc shows the
profile after the shock from the wall zollided with the
contact ac t * 0.703.

These calculations vere extended at will without any
evidence of difficulty. The calculstions were arbditrarily
stopped at t = 0.805. No instabilities have occurred
because accurate solutions from the Riemann golver were
used to define the collision states, & moving grid scheme
was used, and a mathematically-consistent approximate
step function was used wichout artificial viscosity. In
this particular calculation, no CFL time restrictions
were necessary since the first and second order time
corrections (see Eq. 9.b) were identically zero. The
time scale estimate used is t = VIULI/1IVeF - v VUL,

When the denominator vanishes, the time gcale is arbi~-
trarily large, however, the ususl CFL condition is
recovered vhen the grid motion is turned off.

e
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The last problem is & demonstration that this moving
grid schemes does indeed extend to higher dimeasions. On
s unit square, sa infinite shock propagates obliquely to
the coordinate axes. To the left of the shock for a

-—

Y = 5/3 ideal gas, p=24/3, 04, u"vVv>" 0; to the

right of the shock, p =0, # 1, u = =1, v = = 5/8.
The initial pressure profile is shown in Figure 8:

Two grids were used. An underlying coarse grid wvas
used vith Ax ® 1/6 and iy = 1/5. The shock region
is defined on a mesh of length 7-11 grid poinga in the
tangential direction and & width of 3 mesh points of
totsl extent 10™® in the normal direction. A twvo
dimensionsl extension of a second order time marching
scheme was used throughout the domsin, except at tyo
boundaries which were open. At the shock, a rotation vas
performed into the normal direction, and then a transla-
tional frame was found in which the conservative depen-—
dent variables were steady. The pressure profiles nt't
®» 0 and t = 0.56 are shown. Note that the shock remains
sharp. These calculations were run at a CFL number of
200. Figure 9 shows these results. .

The future plans sre to imcorporate the two dimen-
sional shock interaction analysis of Cougant (%1].
Because of the network of shock interactions, i.e.,
triple points, bubbles, atc. expected to arise from two
dimensional interaccing shocks, a rectangular mesh may
become too cumbersome and scattered data interpolation
schemes might be most useful.
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